Les Editions Jean Paul Bayol
Contact
Publications
annexes
   

Pour un principe matérialiste fort

Compléments du livre
"Pour un principe matérialiste fort"

 

Retour au sommaire


L’intrication quantique

L'observation du monde quantique la plus surprenante, qu'Einstein s'était toute sa vie refusé d'admettre, concerne l'intrication (entanglement). Lorsqu'un système expérimental produit deux particules corrélées, toute intervention sur l'une affecte instantanément l'autre, quelles que soient leurs distances respectives. Leurs états sont corrélés. Supposer qu'une action à distance (non productrice il est vrai de transfert d'information) puisse se produire instantanément, même si les particules intriquées sont séparées par l'univers entier, remet en cause radicalement nos conceptions de l'espace et du temps.

Mais il sera sans doute de plus en plus difficile d'admettre l'intrication comme une simple curiosité scientifique, sans conséquence sur nos conceptions du réel instrumental qui sert d'arrière-plan à notre vie quotidienne. Un article tout à fait révélateur du rédacteur scientifique Michaël Brooks publié dans le NewScientist du 27 mars 2004 nous dit pourquoi. Des physiciens font désormais l'hypothèse que l'intrication entre particules existe partout, tout le temps, et qu'elle est susceptible d'affecter le monde macroscopique, nous obligeant à modifier radicalement nos conceptions de celui-ci. Ceci pourrait avoir des conséquences relatives à notre compréhension des phénomènes qui nous demeurent encore en partie mystérieux, ceux de la vie, auxquels nous ajouterons ceux de la conscience.

On l'a dit, l'intrication n'est plus seulement aujourd'hui une propriété théorique. Elle est utilisée pratiquement dans certaines applications, comme la cryptologie quantique. Toute intervention (lecture) sur une particule corrélée avec une autre affecte immédiatement l'état de la particule sœur, si bien que deux correspondants étant convenu d'utiliser un système intriqué comme clef de sécurisation pour leurs échanges peuvent constater en temps réel les tentatives d'effraction sur ce système, lesquelles se traduisent par la réduction immédiate et visible de la fonction d'onde des particules.
Mais l'article cite d'autres exemples où l'intrication entre particules, photons, électrons, atomes ou même molécules, se manifeste de façon détectable par la physique ordinaire. La corrélation en ce cas affecte un grand nombre de particules et non plus un couple. Elle se produit donc à l'échelle macroscopique et doit être prise en considération dans l'étude des états possibles d'un matériau. Les expériences mentionnées apparaîtront au profane assez exotiques et peu susceptibles encore d'applications ou d'extensions. (Corrélation entre les états magnétiques d'atomes d'holmium au sein d'un sel magnétique, dans l'expérimentation de Sayantani Ghosh de l'université de Chicago, référencé par Nature, vol 425, p. 48 (1). Mais pour les spécialistes, elles ne trompent pas. Tout laisse supposer que la physique et plus généralement la science sont à la veille de bouleversements conceptuels profonds.

Dans l'expérience de Sayantani Ghosh, intéressant un sel magnétique contenant des atomes d'holmium, on a pu montrer qu'à très basse température, ces atomes coordonnaient leur orientation magnétique au sein d'un champ d'une façon explicable seulement par un effet d'intrication. Cet effet avait été prévu théoriquement 3 ans auparavant par le physicien théoricien Vlatko Vedral de l'Imperial College à Londres et a été ainsi vérifié. C'est la première fois qu'un tel effet est mis en évidence à échelle macroscopique. Ceci voudrait dire qu'il faudrait dorénavant prendre en compte les effets de l'intrication si l'on voulait prédire le comportement et les propriétés de certains matériaux (de tous matériaux ?) à l'interface de leurs comportements macroscopiques d'une part, quantiques de l'autre.

Mais, selon Michaël Brooks, il va falloir étudier l'effet de l'intrication dans de nombreux autres cas, par exemple dans la supraconductivité à haute température, où des paires d'électrons apparaissent intriquées. D'autres physiciens suspectent que l'intrication est partout, dans le vide quantique (Reznik, référencé par Foundations of Physics, vol 33, p. 137), dans les photons qui nous parviennent d'une étoile, entre les atomes qui composent notre corps (Thomas Durt de la Vrije Université à Bruxelles).
Mais les effets étranges de l'intrication ne s'arrêtent pas là. On commence à suspecter, au moins en théorie, qu'elle peut se faire sentir à travers le temps. Si l'on mesure l'état d'un système quantique au temps t, ceci peut affecter l'état de ce système tel qu'il avait été mesuré au temps t-1 précédent (Caslav Brukner, de l'université de Vienne, cité dans l'article).

Evidemment, suspecter ces divers phénomènes est une chose, prouver leur réalité en est une autre, en tirer des conséquences pratiques une troisième. La première difficulté consiste à produire des particules intriquées de façon courante et en nombre suffisant pour pouvoir expérimenter sur elles. Les difficultés ne sont pas seulement physiques, mais mathématiques et informatiques, car les outils actuellement disponibles pour en calculer les effets sont insuffisamment puissants. Il faudra aussi s'assurer que les premières observations relatives à l'intrication entre plusieurs particules se retrouvent dans les nombreux autres domaines où l'on pourrait a priori suspecter la présence de particules quantiques intriquées avec des particules matérielles, y compris dans les systèmes biologiques. Il faudra aussi expliquer pourquoi des particules quantiques peuvent conserver leurs caractères, notamment l'intrication, alors qu'elles sont au contact d'un très grand nombre de particules matérielles ? Elles devraient "décohérer" immédiatement, comme l'avaient montré les expériences conduites depuis une vingtaine d'années sur la décohérence.

Cela étant, il ne faut pas s'étonner que les observations précèdent les explications. Peut-être même faudra-t-il se résoudre à ne pas expliquer ce que l'on observera. Comme l'on sait, en mécanique quantique, on se borne à mesurer (observer puis prédire en termes statistiques) les phénomènes, sans pouvoir véritablement les expliquer, tout au moins dans les termes de la physique classique. Il est tout à fait possible que les explications scientifiques traditionnelles demeurent limitées aux domaines des sciences macroscopiques, celles-ci n'apparaissant plus que comme des cas particuliers d'une science d'arrière-plan où l'on se bornera à observer et mesurer - ce qui n'empêchera pas d'ailleurs d'agir.

Par contre, montrer que des particules quantiques interviennent efficacement dans des systèmes macroscopiques constitués d'un nombre immense de particules classiques changerait évidemment notre façon de voir le monde. C'est d'abord dans le domaine de la biologie que la question doit être posée.
Nous avons précédemment cité les hypothèses du Dr Mac Fadden, par lequelles il cherche à montrer que l'évolution biologique s'exerçant par l'intermédiaire des mutations des ADN ne se faisait pas entièrement au hasard, sur le mode mutation/sélection du néo-darwinisme classique. Elle pouvait être orientée par des particules quantiques se déplaçant par effet tunnel à l'intérieur des atomes d'un gène et modifiant les caractères chimiques des atomes constitutifs de la molécule d'ADN considérée, d'une façon orientée. Cela lui conférerait des propriétés plus favorables à la survie que si le gène avait muté seulement de façon spontanée. L'auteur de cette hypothèse s'était donné beaucoup de mal pour expliquer pourquoi la particule quantique conservait son état de superposition jusqu'à trouver le bon atome (la bonne liaison chimique) qui rendrait le gène efficace. Son hypothèse, à notre connaissance, n'avait été ni vérifiée ni infirmée. Elle avait rejoint un certain nombre d'hypothèses analogues faisant intervenir les particules quantiques dans les processus biologiques, restées en suspens faute de démonstrations précises. Ne peut-on pas penser alors que les nouvelles hypothèses évoquées dans le cadre de l'intrication entre un grand nombre de particules quantiques permettraient de relancer ces travaux sur des bases plus solides ?

L'objection constamment faite aux biologistes évolutionnistes est que le néo-darwinisme ne permet pas d'expliquer le démarrage du processus réplicatif (voir chapitre 2). On pourrait envisager que l'interaction de particules quantiques intriquées leur ait permis de trouver, parmi une quasi-infinité de solutions testées dans le même instant, la bonne ou les bonnes solutions susceptibles, une fois matérialisées dans le monde macroscopique, de se répliquer. En appliquant la même hypothèse, on pourrait admettre que des particules quantiques intriquées avec des particules physiques entrant dans la composition des molécules d'ADN pourraient, à chaque mutation, calculer les solutions les plus efficaces à la réplication du génome ou de l'organisme qui en est le porteur. Ceci répondrait à l'autre objection faite aux biologistes évolutionnistes : comment les bonnes solutions génétiques apparaissent-elles si vite, alors que le jeu spontané des mutations/sélections au hasard pourraient demander un nombre d'années bien supérieur à ce qu'est l'âge de la vie. lui expliquerait l'autre. Les partisans d'une évolution finalisée par un facteur extérieur perdraient là leur principal argument.
On demandera comment des particules quantiques intriquées pourraient se livrer à des calculs informatiques gigantesques en un temps quasi nul. La réponse pourrait être à chercher du côté de ce que l'on étudie désormais en vue de la réalisation d'un ordinateur quantique, précité. Les q.bits, tant qu'ils ne sont pas réduits, affectent tous les états possibles entre le zéro et le un. Un petit nombre d'entre eux est donc capable de procéder aux calculs que ferait un super-ordinateur doté de milliards de bits. La technologie est loin d'être encore maîtrisée, mais ce sont les questions pratiques qui posent problème :comment maintenir en état de superposition des q.bits qui sont constamment menacés de décohérence du fait qu'ils voisinent dans le dispositif avec des atomes ordinaires ? Certains des algorithmes de calcul qui seront utilisés dans les ordinateurs quantiques ont déjà été conçus. Rien n'interdit de penser que, dans la nature, des algorithmes autrement plus puissants aient pu être sélectionnés au cours de l'évolution. Ceci dit, l'ordinateur quantique ne constitue certainement qu'une solution parmi de nombreuses autres permettant à des computations extrêmement puissantes de s'effectuer dans l'univers en utilisant des particules quantiques.

Evoquons ici d’un mot l'autre hypothèse, encore plus révolutionnaire, signalée par l'article de Michaël Brooks : celle selon laquelle les particules quantiques disposeraient d'états intriqués dans le temps. Si je mesure une particule donnée au temps t et lui trouve tel état, si je renouvelle la mesure une seconde fois, je constate un lien entre la seconde mesure et la première. Tout se passe comme si ma seconde mesure avait affecté la première, par une action à distance dans le temps (analogue à l'action à distance dans le temps qui lie les mesures de l'état de deux particules intriquées). Selon Caslav Brukner, ceci ne permet pas de transmettre des informations dans le passé car il n’y a pas transmission d’énergie, mais peut avoir une conséquence autrement importante, sur le plan théorique : c'est que l'espace et le temps sont également quantifiés et mesurables. La mécanique quantique n'admet pas que le temps soit un observable, mais ce ne devrait pas être le cas de la gravitation quantique, dont on attend un jour ou l'autre, peut-être prochain, des propositions révolutionnaires, par rapport à la physique actuelle, propositions selon lesquelles le tissu ultime de l'univers ne ferait pas référence au temps non plus qu'à l'espace considérés comme des cadres absolus - ce qui est déjà le cas dans le vide quantique ou plus simplement dans les trous noirs.

Il est évident que si des particules quantiques intriquées avec des particules classiques, celles notamment composant notre génome, pouvaient d'une façon ou d'une autre rétroagir sur leur état passé en fonction de leur état présent, ceci expliquerait encore mieux que l'appel à des computations quantiques l'apparente finalité de l'évolution. Une solution isolée ayant réussi aujourd'hui pourrait modifier les paramètres lui ayant permis de voir le jour, de façon à ce que ceux-ci puissent produire à plus grande échelle la bonne solution. Mais n'explorons pas davantage de telles perspectives, car il est évident que si leurs fondements scientifiques se vérifiaient, bien d'autres conséquences pourraient en découler, n'intéressant pas seulement l'évolution biologique.
On pourrait aussi, dans la suite des expériences signalées par Michaël Brooks, se demander si le libre arbitre ne trouverait pas dans la suite de telles recherches une possible explication. Comment expliquer l'apparente liberté dont je dispose pour rechercher les solutions les plus aptes à assurer ma survie ? On sait que les sciences récentes tendent toutes à nier cette liberté, en mettant en évidence des déterminismes plus ou moins complexes qui m'obligent, selon elles, à agir comme je le fais et non autrement. Mon libre arbitre ne serait alors qu'une illusion. Malgré cela, je reste intimement convaincu (c'est même une donnée immédiate de ma conscience) que je suis libre de choisir l'action que je choisis, en éliminant d'autres choix également possibles. L'ennui est que l'observation du cerveau en action ne montre nulle part d'aires ou de réseaux neuronaux où pourrait s'exercer mon libre arbitre.

Mais que se passerait-il si les calculs qui me permettent de me concevoir comme capable d'agir librement se déroulaient dans le monde quantique. Dans ce cas, en un temps nul, les neurones supports des mécanismes d'auto-réflexion pourraient par l'intermédiaire de particules quantiques intriquées à certains de leurs éléments, procéder à des computations dont seul le résultat (supposé alors le meilleur) émergerait sous forme de décision observable. Quand je me sens libre de prendre telle ou telle décision, je ne prétends pas que je suis libre de faire n'importe quoi, par exemple décider de façon aléatoire comme si je tirais la solution au sort. Je me sens seulement libre de faire un choix responsable, engageant l'ensemble de mon être et de son histoire, conscient et inconscient. Mais dans le monde de la neurologie computationnelle macroscopique, je n'ai ni les ressources ni le temps de procéder aux innombrables computations qui seraient nécessaires. D'où ma tentation de considérer que ma supposée liberté n'est qu'une illusion et que je suis en fait agi par des déterminismes divers.
Tout changerait si mon cerveau neuronal macroscopique était doublé d'un cerveau quantique (fut-il beaucoup plus petit) capable de calculer comme le ferait un ordinateur quantique. Il suffirait pour cela que certains atomes composant les neurones de mon cerveau et placés dans des endroits clefs pour l'auto-représentation et la computation des solutions possibles soient intriqués avec des atomes quantiques auxquels ils délégueraient la responsabilité des calculs nécessaires à l'exercice du libre arbitre et plus généralement à l'heuristique permanente qui caractérise la conscience volontaire.

Ces supputations apportent de l’eau au moulin à la thèse de Seth Lloyd, exposée ci-après, selon laquelle l’univers serait un immense ordinateur quantique.

 

Références

Sayantani :
Ghosh http://home.uchicago.edu/~sghosh/CV.html.

Voir aussi :
http://home.uchicago.edu/~sghosh/research.html.

Sur les effets de l'intrication dans des dipoles magnétiques, voir : 
http://arxiv.org/abs/cond-mat/0402456.

Vlatko Vedral :
http://www.qubit.org/people/vlatko/.

Publications de Thomas Durt à la Vrije University :
http://rd-ir.vub.ac.be/vademecum/publication/FUND_pub.html.

Caslav Brukner :
http://www.ap.univie.ac.at/users/Caslav.Brukner/
.

Article: quantum entanglement in time :
http://www.arxiv.org/abs/quant-ph/0402127
.

 

Retour au sommaire